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Abstract

Background—In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic 

materials, secreting inflammatory molecules in the process. The inability of macrophages to 

remove these materials leads to chronic inflammation and disease. How the biophysical and 

biochemical mechanisms of these effects are influenced by fiber length remains undetermined. 

This study evaluates the role of fiber length on phagocytosis and molecular inflammatory 

responses to non-cytotoxic fibers, enabling development of quantitative length-based models.

Methods—Murine alveolar macrophages were exposed to long and short populations of JM-100 

glass fibers, produced by successive sedimentation and repeated crushing, respectively. 

Interactions between fibers and macrophages were observed using time-lapse video microscopy, 

and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1 α, COX-2, PGE2) 

were measured.

Results—Uptake of short fibers occurred more readily than for long, but long fibers were more 

potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of 

inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-

response curves evaluated with length-dependent potency models, using measured fiber length 

distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis 

and increased inflammatory biomolecule production.

Conclusion—Short fibers played a minor role in the inflammatory response compared to long 

fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting 

dose-response curves to fiber distribution data.

*Corresponding author: Julie A. Champion julie.champion@chbe.gatech.edu. 

Supplementary Data
Supplementary data are available online. Word (.docx) and Movie (.MPEG) files

Disclaimer
The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Institute 
for Occupational Safety and Health. Mention of product or company name does not constitute endorsement by the Centers for Disease 
Control and Prevention.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Biochim Biophys Acta. Author manuscript; available in PMC 2017 February 01.

Published in final edited form as:
Biochim Biophys Acta. 2017 February ; 1861(2): 58–67. doi:10.1016/j.bbagen.2016.09.031.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Macrophage; Glass Fibers; Length; Frustrated Phagocytosis; TNF-α: Tumor necrosis factor-α

Introduction

Phagocytosis by macrophages is critical in the degradation and clearance of pathogenic 

materials in the body [1]. High aspect ratio materials such as asbestos fibers or carbon 

nanotubes can be cleared by phagocytosis or persist and induce frustrated phagocytic 

interactions leading to chronic inflammation, oxidative stress, direct cell injury, and 

chromosomal abnormalities [2–5]. This evasion can lead to diseases such as fibrosis, 

asbestosis, lung cancer, mesothelioma for asbestos-like materials, and carbon nanotubes 

have recently been shown to induce asbestos-like chronic inflammation. In this work we 

define frustrated phagocytosis as the failure to engulf after attaching, spreading and 

manipulation of fibers by macrophages. The extent to which high aspect ratio materials 

evade clearance is strongly length-dependent, both in vivo and in vitro [6–17]. However, 

there is no consensus about a critical length beyond which materials persist, as these studies 

are confounded by other material physicochemical properties such as diameter and surface 

chemistry, or by cell type and location within the body.

For asbestos specifically, comparative study of length-based contributions between different 

types remains challenging since they possess different physicochemical properties and lead 

to varied disease endpoints and health outcomes, ranging from cancerous lesions to 

genotoxicity [18–21]. In vivo study of the role of fiber length on disease endpoints is further 

complicated by other length-dependent processes, which can obscure any correlation of 

residual fibers with the disease endpoint. In situ fiber breakage reduces the population of 

long fibers and increases the population of short fibers [22]. In situ dissolution reduces fiber 

diameter, which may then lead to additional breakage [23,24]. Phagocytosis removes shorter 

fibers, changing the length distribution over time. Translocation reduces the fiber population 

at the deposition site and, together with all clearance mechanisms, may have an efficiency 

that depends on fiber length [25]. It is thus difficult to associate unambiguously fibers 

recovered in pathology with those that have induced disease. In in vitro experiments, after an 

induction time, macrophages will successfully engulf short fibers, and we lose the 

information of whether the short-fiber/cell interaction differs from the long-fiber/cell 

interaction. Therefore, we need to monitor cell-fiber interactions on short timescales 

following initial contact. An in vitro model that quantitatively captures all length-based 

contributions to the cellular response is critical to understanding pathogenic mechanisms.

A challenge in studying the effect of fiber properties in biological systems is the difficulty in 

obtaining fiber samples with well-controlled physical properties. The Baron 

dielectrophoretic classifier enabled earlier studies with length-separated glass fibers [15,16], 

while the use of JM-100 model glass fibers decouples fiber length from surface chemistry. 

Blake et al. [15] and Ye et al. [16] revealed a length-dependent cytotoxicity and induction of 

inflammatory cytokines after exposure of alveolar macrophages to glass fibers of varied 

lengths in vitro. However, while the Baron classifier can prepare short fibers with a narrow 
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distribution of lengths, the long fibers are inherently broad in their length distribution. 

Without characterization of long fiber length distributions, it is not possible to attribute a 

critical fiber length to the cellular responses reported.

Here we present a quantitative assessment of phagocytic and inflammatory responses of 

MH-S murine alveolar macrophages to long and short populations of JM-100 glass fibers 

with well-characterized fiber distributions. Parameterization of the length distributions 

enabled the development of models that propose critical lengths for varied phagocytic 

interactions between fibers and cells. These length-dependent interactions were captured by 

time-lapse microscopy and flow cytometry. Production of inflammatory biomolecules, tumor 

necrosis factor α (TNF-α), Interleukin-1 α (IL-1 α), cyclooxygenase-2 (COX-2), and 

prostaglandin E2 (PGE2), was quantified after macrophage exposure to short and long glass 

fiber populations. These pathological hallmarks are evidence of macrophage activation and 

fiber-induced inflammatory signaling [17]. We used the dose-response curves of the directly-

stimulated cytokines (TNF-α, IL-1 α) to identify critical fiber lengths that increase 

inflammatory biomolecule production in macrophages during frustrated phagocytosis of 

long fibers.

Methods & Materials

Fiber sample preparation

Fibers were prepared from a Pall glass fiber depth filter sheet, type AE binder free (Pall Life 

Sciences, Ann Arbor, MI, available as SKC no. 225-7-07, SKC Inc., Eighty Four, PA). This 

media consisted of entangled uncoated borosilicate glass fibers (of nominal diameters 0.1 

μm < d < 10 μm), designed to retain 1-μm particles on liquid filtration. Batches of 24 sheets 

were cut out to fit into a 1¼” die cavity and crushed with a lab press for 60 seconds. Short 

fibers were obtained by crushing at 10 tons and re-crushed at 15 tons, while long fibers were 

crushed at 2 tons. Each batch yields ~ 1.3 g of fiber [26].

Individual fibers were liberated from the residual fibrous mat after crushing through 

suspension in 500 ml of DI water and sonication (Fisher Scientific Sonic Dismembrator 

Model 500 with ½” horn), at 50% amplitude (i.e. tip amplitude ~ 76 μm), for 30 minutes (1 

second on, 1 second off). This procedure was followed to prepare the stock suspension of 

short fibers (no sedimentation step). The long fiber samples were allowed to gravitationally 

settle for 20 minutes, with the resulting supernatant decanted. The sediment was re-

suspended in 500 ml and sonicated as described above. This sonication, settling, decanting, 

re-suspension procedure was iterated 10 times; the 10th sediment constituted the long fiber 

sample. All samples were prepared for diameter measurement by vacuum filtering 1 mL of a 

1000:1 dilution through a 0.8 μm nitrocellulose filter (Millipore AAWP 02500); deposition 

is nominally ~ 1 μg/cm2.

Fiber length measurement

All fiber samples were subjected to a final filtration through a 35 μm mesh to separate 

entangled fibers before length measurement and exposure to macrophages. Fibers were 

imaged (see Time-Lapse Video Microscopy section) on an incubation stage of an Axio 
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Observer Z1 inverted light microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY) and 

observed using differential interference contrast at 100X magnification. This imaging differs 

from the typical phase contrast microscopy analysis of fibers collected on acetone cleared 

MCE filters [27,28].

The length of the fibers was measured, using the line tool from Motic Images Plus 2.0 ML 

(Motic Group, Richmond, BC, Canada); faint fibers were identified with the aid of the 

magnification tool at 200% magnification. Only fibers entirely contained within the field of 

view were included for length measurement; this restriction actually biases the measured 

length distribution against the longer fibers, but since the dimensions of the field of view 

(220 μm x 170 μm) are quite large compared to almost all of the measured fibers, this 

distortion was neglected (Turkevich, unpublished). At this magnification, 1 μm represents 

the image resolution limit.

Fiber diameter measurement

Fibers were imaged with scanning electron microscopy (SEM) to analyze fiber diameter. 

The nitrocellulose filters were mounted on 25 mm planchettes or stubs, using colloidal 

graphite adhesive, and were sputter coated with gold, to prevent charging by the electron 

beam. The samples were analyzed using a Hitachi S3000N scanning electron microscope. 

Secondary electron images were obtained at an accelerating voltage of 25 keV. Images were 

taken at 800X and 4000X. The length and diameter of the fibers were again measured using 

the line tool from Motic Images Plus 2.0 ML. At 800X, fiber diameter quantitation was not 

possible below 0.25 μm; at 4000X, fiber diameter quantitation was not possible below 0.15 

μm.

Fiber count

Serial dilutions of suspended fibers were counted using a haemocytometer mounted on a 

light microscope at 40X magnification; fiber counts were accepted when the difference in 

count among serial dilutions was less than 5%. Short fiber counts were verified by an Accuri 

C6 flow cytometer (Becton Dickinson). Dose-response experiments were reported as a 

function of optically detected (40X mag) fibers/cell.

Fiber labeling with fluorescent probe

Approximately 1.5 mg of glass fibers were suspended in 1 mL of 1 M KOH by sonication 

(pulse mode; 4 sec on, 2 sec off; 30% amplitude; 2 min total process time) and incubated for 

one hour. Fibers were washed with 1 mL deionized water (18.3MΩ.cm@ 25°C) followed by 

a wash with 1 mL ethanol. Washes consisted of centrifuging the fibers at 125 x g for 5 min, 

2400 x g for 10 min, and 21,000 x g for 1 min. To maximize fiber retention while 

minimizing breakage of fibers, the fiber pellet was retained after each centrifugation step 

and only the supernatant was centrifuged in the next step. Fibers were dried in an oven at 

37°C for 1.5 hours. Fibers were then incubated for 2 min in a solution of 1 mL toluene and 

33 μL 3- mercaptopropyl trimethoxysilane, washed with excess toluene to remove 

unconjugated silane, and suspended in 1 mL of 20 mM N-[Tris(hydroxymethyl)methyl]-2-

aminoethanesulfonic (TES) sodium salt buffer solution. 15 μl of 20 mM of 5-

iodoacetamidofluorescein (5-IAF) in dimethyl formamide (DMF) was added. The reaction 
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was allowed to proceed in the dark for 2 hours at 4°C under constant stirring. Fibers were 

washed twice in deionized water by centrifugation at 125 x g for 5 min, 2400 x g for 10 min, 

and 21,000 x g for 1 min to remove unreacted reagents before exposure to cells.

Alveolar Macrophages

Immortalized MH-S murine alveolar macrophages (ATCC-CRL2019) were used as model 

macrophages. They were cultured in RPMI media supplemented with 10% fetal bovine 

serum, 1% penicillin-streptomycin, and 50 μM beta-mercaptoethanol at 37°C in a 

humidified atmosphere containing 5% CO2. MH-S macrophages possess increased 

homogeneity of response in comparison to their highly heterogeneous primary macrophage 

counterparts. The cytokine response is known to differ among primary macrophage cell 

type. Immortalized cells are less responsive to cytotoxic stimuli and are thus ideal as model 

macrophages for dose-response testing of stimuli that are typically cytotoxic at high doses.

Time-lapse video microscopy

Macrophages, 3.2 x 104 cells/cm2 in culture media, were seeded in a glass bottom dish and 

placed in an incubation stage on an Axio Observer.Z1 inverted microscope (Carl Zeiss, Inc.) 

and observed using differential interference contrast at 100X magnification. Cells were 

allowed to attach for 1 hour before short or long fibers were added to the center of the dish. 

Images of fiber-cell interactions were captured every 2 min by a Zeiss AxioCam camera for 

24 hours. Images were collected and compiled into videos using AxioVision software and 

manually analyzed for cell-fiber interactions. Successful phagocytic internalization was 

characterized by membrane ruffling at the site of attachment, blurring the crisp boundary of 

the membrane, and subsequent reforming of the membrane boundary after internalization. In 

addition, a fiber was only classified as internalized if it remained within the cell membrane 

boundary for the remaining observation period. Fibers with incomplete internalization 

and/or attachment were seen to cross the cell membrane of mobile cells.

Quantification of fiber internalization and attachment

Macrophages were plated at 5.3 x 104 cell/cm2 in a 48-well plate and incubated for 24 hours. 

Cell culture media was replaced with identical media containing fibers at various 

concentrations for 24 hours. Short fibers were incubated at concentrations of 5, 10, and 20 

fibers/cell, while long fibers were incubated at concentrations of 5, 7.5, and 10 fibers/cell. 

Cells were harvested by scraping, centrifuged at 125 x g for 5 minutes followed by 

suspension in 200 μl PBS. Short fiber internalization and attachment events were 

distinguished by the use of trypan blue, which quenches fluorescence of externally bound 

fibers but not internalized fibers. Half of each cell sample was mixed with equal volumes of 

either PBS (unquenched) or trypan blue (quenched), and filtered with 35 μm mesh. Cell 

fluorescence was measured with an Accuri C6 flow cytometer. The cell populations were 

gated to exclude free fibers not associated with cells. Cells were identified as associated with 

fibers if their fluorescence was greater than cell autofluorescence measured in the absence of 

fibers for both the trypan blue quenched and PBS unquenched conditions.

Images of long fiber interactions with macrophages were captured after 24 hours by a Zeiss 

AxioCam camera (Phase contrast 40 X magnification). Internalization and attachment 
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interactions were quantified after visual inspection of randomly selected images of each 

fiber/cell concentration. The process was repeated three times and the average count 

reported. A total of 700 fiber-cell interactions were recorded.

Inflammatory Biomolecule and Cytotoxicity Measurements

Macrophages were seeded in 6-well plates (5.3x104 cells/ cm2) for COX-2 and PGE2 

measurements, and in 96-well plates (1.6x105 cells/ cm2) for TNF-α and IL-1 α 
measurements, for 24 hours. Cell culture media was replaced with identical media 

containing fibers at concentrations of 5–15 long fibers/cell and 10–150 short fibers/cell. 

Bacterial lipopolysaccharide (1 μg/mL LPS) was used as an inflammatory stimuli positive 

control. After 24 hours of cell-fiber incubation, supernatants were harvested for TNF-α, 

IL-1α, and PGE2 and interrogated by ELISA following R&D Systems (Minneapolis, MN) 

instructions. Supernatants were also used to determine cytotoxicity by detection of lactate 

dehydrogenase (LDH) with a colorimetric assay based on the reduction of pyruvate from 

Thermo Scientific (Waltham, MA). Cell lysates were collected and used for COX-2 ELISA 

(R&D Systems) following the manufacturer’s instructions. All cell fiber conditions were 

repeated in triplicate, and results were validated with three separate preparations of short and 

long fibers.

Reactive Oxygen Species (ROS) Production

Macrophages were seeded in 48-well plates (5.3 x 104 cell/cm2) for 24 hours prior to 

pretreatment with 10 μM dose of the non-fluorescent, membrane-permeable dye 6-

carboxy-2′,7′-dichlorodihydrofluorescein diacetate(carboxy-H2DCFDA, ThermoScientific, 

Grand Island, NY) at 37°C for 20 min. Esterases in the cells convert carboxy-H2DCFDA to 

the charged form to increase intracellular retention. Cells were then washed with PBS before 

treatment with short and long fibers for 24-hours as detailed in the inflammatory 

biomolecule and cytotoxicity section above. Carboxy-H2DCFDA is chemically reduced by 

intracellular reactive oxygen species (ROS) to become fluorescent. Cell fluorescence was 

detected using a fluorescent plate reader (Biotek, Winooski, VT)

Statistical analysis

Data are presented as mean ± standard deviation of the mean of representative experiments. 

Group means were compared using Student t test or one-way analysis of variance. P<0.05 

was considered statistically significant.

Length-derived parameters and model fitting

In our fitting of these models, the length distribution of the fibers is represented by log-

normal distribution,

(1)

with parameters;
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Similar determinations could have been made directly using the length histograms; however, 

the shot noise inherent in the finite binning of the histograms introduces additional 

interpolation uncertainty.

Since the fiber populations differ only in their length distributions, for the case of direct 

stimulation, the ratio of the slopes of the dose-response curves depend on a potency 

function, p(L), averaged over the length distribution: <p(L)>. In each of the three models, 

the function p(L) is defined and <p(L)> is calculated.

Model 1 - Length cut-off, Lc—Model assumption - Fibers shorter than Lc elicited no 

cytokine response, while all fibers longer than Lc contributed equally to the cytokine 

response. The potency function p(L) is given by:

(2)

The model attributes fiber potency to the number of fibers not internalized by macrophages, 

generating an average potency

(3)

where cum(L) is the cumulant of the fiber length distribution. For a log-normal fiber 

distribution (1), the average potency (3) becomes.

(4)

where erfc(x) is the complementary error function.

Model 2 - Power-law Potency—Model assumption - Fiber potency varies as a power law 

of the length, weighting very long fibers as more ‘problematic’ for macrophages.

(5)

For a log-normal length distribution (1), the average potency becomes
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(6)

Model 3—Power-law Potency with a Cut-off—Model assumption - Fibers shorter than 

a cut-off, Lc, do not elicit a cytokine response from macrophages, while fibers longer than 

this cut-off elicited a response that scales as a power of the length.

(7)

In this model, those fibers that are internalized by macrophages do not contribute to the 

cytokine response, and, of the non-internalized fibers, the longer ones are more potent. For a 

log-normal distribution (1), the average potency becomes

(8)

where, again, erfc(x) is the complementary error function.

Results

Fiber length and diameter distribution

Subsequent to their separation into “short” and “long” populations by high pressure 

crushing, and low pressure crushing followed by repeated sedimentation, respectively, the 

diameter and length of fiber samples were measured. Figure 1 shows the length distributions 

of the two populations. The fiber length distributions were confirmed to be log-normal 

(Figure 1 inset) where mean length, μ, was 7.0 μm and 39.3 μm for short and long fibers, 

respectively. Electron micrographs of typical short and long fibers are shown in 

Supplementary Figure S1. Fiber diameter is centered around d ~ 0.8 μm (Supplementary 

Figure S2) and is uncorrelated with fiber length (Supplementary Figure S3).

Fiber-cell interactions

The immortalized murine MH-S alveolar macrophage cell line was used as a model to 

examine the role of glass fiber length in uptake, cytotoxicity, and inflammatory response. 

Real-time images of fiber-cell interactions were captured using time-lapse microscopy. A 

total of twenty-five fiber-cell interaction events, in which fibers either attached to or were 

internalized by macrophages, were recorded. Figure 2 provides snapshots showing 

representative interactions -- internalization of a short fiber and frustrated phagocytosis of a 

long fiber. Cell membrane ruffling can be seen at the site of attachment to the short fiber 

with subsequent blurring of the crisp boundary of the membrane. A membrane boundary 
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reformed after the fiber is completely engulfed by the cell with the fiber remaining in the 

same focal plan and relative position within the cell (Supplementary Movie 1). The cell 

interacting with the long fiber can be seen to attach with a pseudopod-like projection, pull 

the fiber toward it, and spread along a small region of the fiber. It is evident that the cell can 

exhibit significant force on the fiber as it flips the fiber vertically 180°(Supplementary 

Movie 2). The scenario in which the macrophage is ‘speared’ on the fiber was never 

observed, nor was any cell blebbing upon fiber-cell interactions. Internalization events were 

fewer for long fibers in comparison to short; 25% of cell binding events with short fibers 

resulted in phagocytic internalization, while only 12% of long fiber binding events were 

internalization events. Only frustrated phagocytosis was observed to occur for fibers greater 

than 16 μm.

For high throughput quantification of fiber-cell, fibers were covalently conjugated with 

fluorescent probe IAF (5-Iodoacetamidofluorescein) for detection by flow cytometry 

(Supplementary Figure S4). Cell fluorescence was measured in the absence or presence of 

extracellular fluorescence quenching agent trypan blue to measure the combination of 

attached and internalized fibers or only internalized fibers, respectively. This measurement 

counts relative populations of cells but does not yield information on, the number of fibers 

associated with a cell. Therefore, internalization refers to the complete phagocytosis of at 
least one labeled fiber, and attachment refers to attachment of at least one labeled fiber. The 

cells exhibited a dose-dependent increase in total short fiber interactions, but the relative 
fraction of cells with internalized fibers compared to attached was independent of 

concentration (Figure 3). Flow cytometry was not feasible for long fibers due to the 

similarity in lengths of the long fibers and the core diameter of the flow cytometer fluidics 

components. However, quantification of long fiber-cell interactions at 24 hours post-

incubation by optical observation at 40X magnification revealed a similar independence of 

internalization with increased long fiber dose (Supplementary Figure S5).

Fiber Cytotoxicity

Macrophages were exposed to short and long fibers for 24 hours, and released cytosolic 

lactate dehydrogenase (LDH) was measured from culture supernatants as a measure of 

cytotoxicity. The fiber-exposed macrophages exhibited no detectable LDH cytotoxicity, i.e. 

the normalized optical absorption fell below the limit of detection range (LOD = 12.5 +/

− 3.5%) of the media blanks. Fiber concentrations ranging from 0 – 15 long fibers/cell, and 

0 – 150 short fibers/cell exhibited no cytotoxicity (Figure 4).

Fiber induced ROS activity

Cell permeating fluorescent probes such as DCDHF has been used to measure intracellular 

ROS activity in fiber-stimulated macrophages [29,30]. DCDHF is used to measure the 

cumulative ROS [31] response after 24 hrs of fiber stimulation to macrophages. Activity of 

the DCDHF probe was confirmed by LPS stimulation of macrophages (positive control, 

supplementary data Fig. S7). Cumulative intracellular reactive oxygen species (ROS) 

production in response to either long or short fibers is weak. Individual experiments all 

exhibited ROS signals below the LOD. Attempts to pool the data, using, as a standard, the 

ROS signal generated from cells stimulated by LPS (at 1 μg/mL) resulted in low R2 values 
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indicative of minimal statistical correlation due to this standard signal variance. The pooled 

data suggest: i) ROS production in response to the glass fibers is detectable, and ii) increased 

ROS production following exposure to long (vs. short) fibers. However, we caution that the 

ROS signals are all weak, and the above suggestions are not statistically significant. A 

detailed statistical analysis of the ROS measurements is provided in the Supplementary 

Data.

Fiber induced inflammatory molecule production

Four inflammatory-related molecules were measured by ELISA following 24 hours of 

exposure to fibers. TNF-α cytokine secretion exhibited a linear dose-response on a per fiber 

basis (Figure 5). The signal is strong (much larger than the LOD = 16 pg/mL and LOQ = 44 

pg/mL). Long fibers produced greater inflammatory biomolecule secretion than short fibers. 

The ratio of the TNF-α dose response slopes of long to short fibers was mL/mS = 11.1, with 

a 95% confidence interval of 9.1 < mL/mS < 13.3.

Cytokine IL-1α was secreted in very low quantities, but above the limit of detection (LOD = 

1.4 pg/mL, LOQ =6.5 pg/mL). Again, both long and short fibers exhibited linear dose 

responses (Figure 6). The ratio of long and short fibers slopes of the IL-1α dose-response 

curves mL/mS = 11.3, with a 95% confidence interval of 8.1 < mL/mS < 15.7.

Cyclooxygenase-2 (COX-2) production by fiber-treated macrophages depended inversely on 

fiber dose (Figure 7). The variation of the fiber-stimulated COX-2 production is complicated 

by the fact that it depends both directly on the stimulating fibers but also indirectly on the 

cytokine TNF-α, whose production is also stimulated by the fibers [32]. We noted that 

COX-2 production varies inversely with TNF-α expression (Supplementary Figure S5).

Prostaglandin E2 (PGE2) is a secreted downstream metabolite of the COX enzymatic 

pathway. PGE2 secretion was greater for long fibers than short fibers (Figure 8). The 

measured signal from PGE2 secretion was low, but there was a weak observed linear dose-

response for long fibers. PGE2 production for short fibers was neither statistically 

significant, i.e. most signals were below the limit of detection (LOD = 55 pg/mL), nor dose-

dependent.

Discussion

This work uses model glass fibers with measured length distributions and model alveolar 

macrophages to assess fiber length effects on phagocytosis and associated inflammatory 

biomolecule production, and to develop the quantitative model described below. The use of 

glass fibers eliminates contributions of surface chemistry and diameter from those of fiber 

length. Macrophages are highly heterogeneous cells, and immortalized mouse MH-S 

alveolar macrophages were chosen as model macrophages because of their increased 

homogeneity in response to particles of various shapes and sizes [33,34]. Although cytokine 

response varies across macrophage source, macrophage dose-response is investigated here, 

and analysis of the change in response is used to build our models. While cytotoxicity by 

glass fibers is less pronounced for immortalized cell lines [16] than for primary cell line 

[7,15], the trends of cytokine response for short and long fibers are the same. Moreover, 
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MH-S macrophages have been shown to function similarly to primary cells for phagocytic 

interactions and IL-1α cytokine response [35,36].

Stanton performed an exhaustive study across various asbestos types and hypothesized that 

asbestos fiber dimension and durability, rather than other physicochemical properties, were 

responsible for fiber-related biological effects in vivo [10]. The latency of asbestos-

associated pulmonary diseases, as well as the established link between chronic inflammation 

and cancer [20,21], supports this theory of chronic inflammation resulting from 

biopersistence as the prevailing cause of disease pathology [6,37–40]. In vivo and in vitro 
studies examining the role of fiber length on biopersistence also support this theory. 

Goodglick et al. showed that both short and long asbestos fibers were cytotoxic in vitro, 

while short fibers were cytotoxic when clearance was prevented in vivo[8]. In threshold 

length studies using silver nanowires Schinwald and colleagues identified in vivo threshold 

lengths of L >4 μm, and 11–14 μm for fiber-induced pleura [9] and pulmonary [41] 

inflammation respectively. McDonald and colleagues described long fibers (>10 μm) as 

having the greater pathogenic risk than short fibers (<6 μm) in vivo [42]. However, direct 

comparison among different forms of asbestos remains challenging due to fiber 

heterogeneity. Comparative length dependent studies, using actual asbestos fibers, have 

neither been able to characterize fibers within narrow length-classified size ranges, nor 

separate other confounding fiber parameters such as diameter, chemistry, and surface 

properties. Indeed, recent studies of asbestos-like high aspect ratio nanomaterials, of which 

carbon nanotubes are a subset, have shown that these fibers elicit an inflammatory response 

due also to surface chemistry-related reactivity and thus are unable to isolate length-based 

contributions from the biological effects. This highlighted the need for model materials in 

which pathogenic parameters can be isolated and accurately characterized in order to 

determine single-parameter contributions to disease endpoints. To this end, in vitro studies 

using glass fibers identified length dependence to the inflammatory response and speculated 

that increased inflammatory response was due to frustrated phagocytosis of longer fibers. 

Blake et al. observed a length-dependent cytotoxicity and production of reactive oxygen 

species after exposure of alveolar macrophages to glass fibers of varied lengths [15]. Ye et 

al. showed that long fibers (17 μm) were significantly more potent than short fibers (7 μm) in 

inducing inflammatory NF-kB activation and TNF-α production [16]. Zeidler-Erdely et al. 

also found that glass fiber > 17 microns were cytotoxic to human primary macrophages [7]. 

Here we are able to quantify phagocytic interactions and corresponding molecular responses 

from accurately characterized glass fibers to develop a model that can be used to evaluate the 

isolated contributions of fiber length to macrophage interactions.

Real-time imaging of interactions between macrophages and fibers revealed internalization, 

attachment and frustrated phagocytosis outcomes within short and long samples, suggesting 

weighted contributions of these processes to the overall inflammatory response. We saw that 

the fraction of internalized long fibers was less than that of short fibers, with long fibers 

undergoing frustrated phagocytosis due to the inability of the cell to effectively phagocytize 

fibers. No spearing or damage to the cell membrane was observed. Since, there is ample 

microscopy evidence for such processes in the literature [6,11], they are either rare, 

dependent on macrophage type, fiber diameter and type [43] or occurs on time-scales longer 

than the 24 hours of our time-lapse experiments. Our observation of macrophage 
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biochemical response to fibers on the short timescale implicates a mechanism other than 

spearing responsible for increased inflammatory response. Comparison of the average 

contact surface areas, which scales with fiber length at constant diameter, of long and short 

internalized fibers, revealed no relationship between quantities of fibers internalized and 

their average fiber lengths. Thus, internalization does not scale solely with average fiber 

length, suggesting that other more complex length models are possible. The quantity of 

internalized short fibers was limited only by fiber concentration, as flow cytometry data 

showed increased internalization with increased short fiber concentration.

Similar to the cytotoxic findings of Ye et al. with immortalized peritoneal macrophages [16], 

we found no relationship between fiber length and cytotoxicity. Neither increases in 

attachment nor internalization had adverse cytotoxic effects. Likewise, cumulative 

intracellular ROS production by fiber-stimulated macrophages is weak, with, perhaps, an 

enhancement in ROS production by macrophages stimulated by the long fibers 

(Supplementary Figure S7). Reactive oxygen species (ROS) are a complex array of highly 

reactive molecules including H2O2, HOCl, *OH, *O, and superoxide anion compounds. In 

phagocytes oxidative stress responses at the plasma membrane in response to extracellular 

pathogenic material [44], and metal ions [2,45] can lead to the generation of extracellular 

ROS compounds. Generation of ROS by NADPH oxidase also occurs in intracellular 

compartments such as phagosomal membranes and mitochondria.

In fiber induced diseases ROS plays a pivotal role through fiber-mediated respiratory bursts 

[46], and frustrated phagocytosis [47]. ROS also plays a role both in cell signaling [48], 

activation of cytokine transcription [49], and oxidative stress-mediated cytotoxicity [50]. 

Increasing levels of intracellular ROS is indicative of cell toxicity [51]. The low intracellular 

ROS produced by glass fiber stimulation is expected, given the observed lack of cytotoxicity. 

The low level of ROS produced did not permit significant length-based conclusion, as 

demonstrated by Brown et al in the study of morphological dependence on phagocytosis of 

carbon nanotubes [52].

Cytokines TNF-α and IL-1α are secreted in response to inflammatory stimuli. TNF-α has 

been identified as a critical mediator of fiber-related pathogenicity [16], while pro-

inflammatory cytokine IL-1α works in concert with TNF-α and is induced following NF-κB 

activation [53]. IL-1α secretion has also been reported upon exposure to carbon 

nanotubes[54,55]. Additionally, IL-1α, along with IL-1β, is indicative of inflammasome 

activation [56,57]. Studies have shown that the inflammasome is activated upon stimulation 

by asbestos fibers, carbon nanotubes, and nanoparticles [47,58,59] with reports of dose-

dependent secretion of IL-1α [58,60]. Similar to Palomaki and colleagues, glass-fiber 

stimulation of IL-1α secretion was both dose- and length-dependent[58].

NF-κB has been shown to a have a length-dependent activation by glass fibers [16]. 

Comparison of the slopes of the dose-response curves for TNF-α and IL-1α showed a 

greater response to long fibers than to short fibers (Figures 5, 6). TNF-α cytokine secretion 

did not scale with the average fiber length. We would expect that the ratio of the slopes of 

short and long cytokine response curves to be the same as the ratio of the short and long 

average fiber lengths (7 μm /39.3 μm) if cytokine secretion scaled only with fiber length. 
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Additionally, short fibers produced a weaker inflammatory response per fiber. By extension, 

complete phagocytosis of fibers has minimal contribution to the inflammatory response. 

This agrees with contributions of ‘frustrated’ phagocytic interaction or incomplete 

internalization of longer fibers to the inflammatory condition [61].

We assessed the ability of the fibers to stimulate pathogenic markers, cycolooxygenase-2 

(COX-2) and its downstream metabolite, prostaglandin E2 (PGE2). COX-2 is known to 

modulate carcinogenesis. It is induced by oxidative stress and inflammatory cytokine 

secretion, which are key mechanisms of asbestos fiber responses in cells [62]. Fiber-treated 

macrophages demonstrated an inverse relationship between TNF-α and COX-2 at 24 hours 

post-incubation (Supplementary Figure S6). Literature supports that this modulatory action 

may be NF-κB dependent. Not only is NF-κB known to up-regulate COX-2, but COX-2 

activity in turn affects NF-κB [63,64]. Past studies of inflammatory regulation reveal a 

temporally destabilizing effect of TNF-α on COX-2 mRNA [32]. Our COX-2 results 

supports this proposed feedback action of COX-2, since at short time scales production of 

PGE2 is weak but shows concomitant increases with TNF-α.

We have attempted to rationalize the cytokine data, which demonstrates the increased 

relative potency of long over short fibers with three simple models— that may be treated as 

a phenomenological parameterization of the data. These models were fitted only to TNF- α 
and IL-1 α, since they are directly stimulated by the fibers; by contrast, COX-2 and PGE2 

depend both directly on the stimulating fiber and also indirectly, through the cytokines 

generated by the macrophages responding to fibers. The two fiber populations differed only 

in their distribution of lengths, not diameters or chemistry. Thus the ratio of the slopes of the 

dose-response curves can only depend on some potency function, p(L), averaged over the 

length distribution: < p(L) >.

In the first model, a simple length cut-off, Lc, is posited so that fibers shorter than Lc elicit 

no cytokine response, and that all fibers longer than Lc contribute equally to the cytokine 

response; the potency function p(L) is given by:

(2)

Using the fitted parameters for short and long fiber distributions, we obtain Lc = 27.0 μm, 

with a 95% confidence interval 22.9 μm < Lc < 31.4 μm for TNF- α, and Lc = 27.4 μm, with 

a 95% confidence interval 20.8 μm < Lc < 36.0 μm from the IL-1α response. It is 

remarkable that these two cytokines, TNF-α and IL-1α, yield similar relative potencies of 

the long and short fibers. Furthermore, the cut-off length is quite reasonable when compared 

to the size of macrophages. Typical rodent alveolar macrophages are ~13 μm in suspension 

[65]. However, plated macrophages spread to larger diameters, 20.7 +/− 8.8 μm in this work, 

and are the appropriate comparison since all experiments were performed on plated cells.

In the second model, long fibers are modeled as being more potent than short through a 

power law:
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(5)

There is no cut-off length in this model. Using the fitted parameters for short and long fiber 

distributions we obtain α = 1.75, with a 95% confidence interval 1.56 < α < 1.93 for TNF- 

α, and α = 1.76, with a 95% confidence interval 1.46 < α < 2.11 from the IL-1α response. 

Most physical quantities relevant to fiber -cell interactions, such as average fiber length, 

average volume, mass, average surface area, all scale as <L> (i.e. α = 1) and thus α > 1 is 

unreasonable. Our results thus argue for either a stronger length variation of potency 

(stronger than a power law, or for an additional reduced potency of the short fibers e.g. 

through a length cut-off, Lc).

In a third two-parameter model, fibers longer than a cut-off, Lc, elicit a response, scaling as a 

power of the length, that is, longer non-internalized fibers, are weighted more; the 

appropriate potency function is

(7)

If we force α = 1, we obtain Lc = 12.1 μm, with a 95% confidence interval 7.7 μm < Lc < 

16.3 μm for TNF- α, and Lc = 12.5 μm, with a 95% confidence interval 4.9 μm < Lc < 20.6 

μm from the IL-1α response. Again, the cut-off lengths determined by these independent 

cytokine measurements are very similar.

With a cut-off, if there is no additional length dependence of the potency (α= 0), we obtain 

Lc ~ 27 μm, comparable to the macrophage size. If, with a cut-off, the potency of the non-

phagocytosed fibers depends on the standard physical parameters (α = 1), we obtain Lc ~ 12 

μm, shorter than the macrophage size, but not unreasonable. Frustrated phagocytosis was 

observed by time-lapse microscopy for length, L > 16μm, which is consistent with the cut-

offs obtained from the first and third models; we have no independent criteria to prefer the 

first model over the third model. We note that, α = 1.75 from a simple power law potency 

(second model) seems unreasonable.

Schinwald and colleagues reported a critical length range of 5 μm for onset of frustrated 

phagocytosis in a primary alveolar in vitro migration assay [41]. However, considering the 

contribution of fiber length distribution, and in vitro assay type we cautiously report that the 

authors’ threshold length is within the range of our third model predictions. Schinwald et al 

proposes that mechanical obstruction of long bulky fibers may have led to decreasing 

mobility with increasing fiber length. We have also observed that multiple cells will 

simultaneously attempt to engulf the same longer fiber which may lead to low cell mobility, 

as seen by Schinwald et al. Given our frequency of fiber length, with 40% of short glass 

fibers and 95% of our long fibers being greater than the silver nanowire lengths examined a 

migration assay would not have been feasible for direct comparison of threshold lengths.
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Our models suggest that fiber-cell interaction differs above and below a critical fiber length; 

fibers with lengths L < Lc contribute minimally to inflammatory biomolecule production, 

while the majority of biomolecule production is due to frustrated phagocytosis of fibers of 

length L>Lc. Lc should be viewed as a statistical parameter, as variations in macrophage cell 

and fiber-cell orientation will influence the outcome of individual fiber-cell interactions. The 

output of the length-based models may change with fiber and cell type. The degree, to which 

this occurs, along with in vivo validation of in vitro findings, will be the focus of our future 

work. By establishing glass fiber length-based models as a control, the question of the extent 

to which length potentiates the adverse effects of other physicochemical parameters of 

asbestos fibers can be answered. Importantly, independent of the detailed modeling, these 

studies have shown that, even for very short induction times (~ 24 hours), there is significant 

length dependence to the response of macrophage cells phagocytic interactions with fibers.

Conclusion

Our results show that the single physical parameter of length plays an important role in 

fiber-induced macrophage inflammatory responses. Pro-inflammatory cytokines, TNF-α and 

IL-1α, were shown to increase in both a dose and length dependent manner. Short fibers 

were more readily internalized and played a minor role in inflammatory biomolecule 

production compared to long fibers on a per-fiber basis. The MH-S cell line showed no dose 

toxicity allowing us to reproducibly evaluate dose-response up to two orders of magnitude. 

Importantly, for our stimulating material, characterization revealed no correlation between 

fiber diameter distribution and length distribution, so we are able to isolate the effect of fiber 

length on the macrophage response. This distinguishes our study from previous work on 

length dependence of frustrated phagocytosis and inflammatory responses. Here we show a 

universal dose-response approach to determining critical length and present two possible 

models that describes phagocytic interactions: a critical length based model in which the 

potency of longer fibers are equally weighted, and a two-parameter power law and potency 

model in which the weighting is skewed toward longer fibers. Each model produces 

reasonable critical lengths for frustrated phagocytosis: 27 μm and 12 μm respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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General Significance

The single physical parameter of length can be used to directly assess the contributions of 

length against other physicochemical fiber properties to disease endpoints.
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Highlights

• Isolation of single physical parameter, length, using 

glass fibers

• Length-dependent increase in inflammatory response of 

macrophages to glass fibers

• Dose-dependent cytokine production not accompanied 

by fiber-induced cytotoxicity

• Critical lengths of frustrated phagocytosis are revealed 

by quantitative models

• Potentially use to weigh contributions of fiber length 

against other parameters
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Figure 1. Fiber length distribution
Representative histograms of the length distributions of (a) short and (b) long fibers. Both 

populations exhibit a log-normal distribution for fiber lengths (inset).
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Figure 2. Time-lapse video microscopy frames of macrophage-fiber binding events
(A) A short fiber being internalized by a macrophage. (B) A macrophage attaching to and 

pulling a long fiber toward itself without internalization. Scale bar: 20 μm, Time: 0–3 hrs.
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Figure 3. Fiber-cell interactions with increasing short fiber dosage
Fiber-cell interactions quantified by flow cytometry reveal a dose-dependent increase in all 

interactions for short fibers. The relative percentage of cells with internalized interactions 

compared to total interactions was relatively unchanged for all fiber doses, with 36.4%, 

35.7%, and 34.9% for short fiber doses 5, 10, and 20 respectively. A total of 10,000 cells 

were counted including cells with no associated fibers.
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Figure 4. Cytotoxicity of macrophages exposed to short and long fibers
The percentage cytotoxicity was measured as the quantity of LDH released from fiber-

damaged cells relative to a lysed cell control. Normal cell turnover corresponds to 0 fibers /

cell and is noted by a dashed line (---). On average fiber cytotoxicity was not significant for 

both short and long fiber populations as compared to the media blank with the exception of 

the maximum long fiber dose, 15 long fibers/cell. *p<0.05
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Figure 5. TNF-α dose-response curves
TNF-α secretion showed a linear dose response for short and long glass fibers. Data shown 

was collected for three (3) independent experiments.
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Figure 6. IL-1α dose-response curves
IL-1α secretion showed a linear dose response for short and long fibers. Data shown was 

collected from three (3) independent experiments.
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Figure 7. COX-2 Enzyme Production
COX-2 production decreased with increasing fiber dose -short fiber stimulation resulted in 

significantly high expression of COX-2 while long fibers were generally comparable to no 

fiber stimulation.
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Figure 8. Prostaglandin E2, PGE2, production 24 hours post-incubation
Short fiber response was independent of fiber concentration. Long fibers showed weak dose 

dependence in comparison to 0 fibers/cell control.
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